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Auxin-mimic herbicides (AMHs) classified by HRAC as Group 4 encompass a group 
of molecules that mimic the action of the natural hormone (indole-3-acetic acid, 
IAA) in plants, affecting plant signaling, disrupting regulatory pathways, and 
ultimately inhibiting their growth and development

Damage caused by 2,4-D 
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What are auxin-mimic herbicides?
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Classification of AMH by chemical structure
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Herbicides. Outlooks on Pest Management, 35(3), 105-112.
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Top two AMHs chemical classes use in crop production
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Adapted from: Gaines, 2006

How do AMHs act in plants? 

Nucleus, enlarged
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Adapted from Dayan, 2006

How do AMHs act in plants? 
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AMHs are among the top three herbicides used just 
behind of glyphosate (Group 9) and ALS (Group 2)

AMHs resistance cases reported in the globally 
and in the  USA
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Herbicides. Outlooks on Pest Management, 35(3), 105-112.



Resistance cases reported
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Herbicides. Outlooks on Pest Management, 35(3), 105-112.



Any trait which slows/prevents herbicide reaching the site of
action, or reduces toxic effect at site of action

Target Site
Mutation/deletion Increased expression/

Gene amplification

Non-Target Site
Metabolism Altered translocation 

& sequestration
Reduced 

foliar uptake
General oxidative 
stress response

Potential resistance mechanisms
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Gaines et al 2020 Mechanisms of evolved herbicide resistance JBC 295:10307

Non-target site resistance mechanisms
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2,4-D metabolic resistance in waterhemp 
(Amaranthus tuberculatus)

COLORADO STATE UNIVERSITY
THE COLLEGE OF AGRICULTURAL SCIENCES
Agricultural Biology Department

Figueiredo et al 2018 Metabolism of 2, 4‐dichlorophenoxyacetic acid 
contributes to resistance in a common waterhemp population. Pest 
Management Science, 74(10), 2356-2362. 11
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Figueiredo et al 2022 Identification of a novel 2, 4-D metabolic 
detoxification pathway in 2, 4-D-resistant waterhemp (Amaranthus 
tuberculatus). Journal of Agricultural and Food Chemistry, 70(49), 
15380-15389.
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Malathion synergizes 2,4-D

R

R Mal

S

S Mal

Estimated effective dose: 50%
Estimate (g ai ha-1) Std. Error

R 192 44
R Mal 24 8
S 21 5
S Mal 23 3g a i ha-1 – 28 Days After Treatment

Malathion effect on 2,4-D resistance

Figueiredo, et al. (2018) Pest management science 13



2,4-D metabolism in Waterhemp

S Waterhemp – 264 h after 2,4-D application

R Waterhemp – 264 h after 2,4-D application
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Figueiredo, et al. (2018) Pest management science
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de Figueiredo et al 2022 Identification of a novel 2, 4-D metabolic detoxification pathway in 2, 4-
D-resistant waterhemp JAFC 70:15380 15



Resistance to Scorch EX in kochia

Scorch EX is a UPL product with 
dicamba, 2,4-D and dichlorprop0 1 2 3 4 5 6
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Any trait which slows/prevents herbicide reaching the site of
action, or reduces toxic effect at site of action

Target Site
Mutation/deletion Increased expression/

Gene amplification

Non-Target Site
Metabolism Altered translocation 

& sequestration
Reduced 

foliar uptake
General oxidative 
stress response

Potential resistance mechanisms
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RNA-Seq Alignment: lower expression in R 
RILs in IAA2, gap in coverage
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Biot-TKT Degron Degron tail Fraction of PB1
IAA2 QIVGWPPVR SSRKNNNSV SYVKVS
IAA2Δ27 QIVGWPPVR SYVKVS



SPR – Affinity binding assays (TIR1 protein)

Binding association (Ka) is lower for SoIAA2Δ27 – Lower recognition and binding interactions 
Dissociation (Kd) is higher for SoIAA2Δ27 – Higher instability of complex formation
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TIR1-SoIAA2Δ27 IAA 40.7
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TIR1-SoIAA2 2,4-D 135
TIR1-SoIAA2Δ27 Dicamba 694
TIR1-SoIAA2 Dicamba 250
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TIR1 and IAA2 binding prediction

The lost of 9 AA may reduce the capacity of IAA2 PB1 domain
IAA2

IAA2Δ9
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Montgomery et al 2024 A transposable element insertion in IAA16 
interrupts normal splicing and generates a novel dicamba resistance 
allele in Bassia scoparia. Plant Journal, online



Sensitive
Resistant Sensitive

Resistant
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Montgomery et al 2024 A transposable 
element insertion in IAA16 interrupts 
normal splicing and generates a novel 
dicamba resistance allele in Bassia 
scoparia. Plant Journal, online



One high-effect QTL exists on chr4

348,844 variants detected  
2,473 variants passed filtering
Significance plotted in red
Peak centered at 88 Mbp
IAA16 located at 87.4 Mbp on 
chr 4
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IAA16Mutant is hyper variable around the degron
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Variable region of IAA16 flanks splice junction
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Transposable element insertion at the beginning of 
exon 2 disrupts normal splicing

~3500bp

Tissue of homozygous resistant F3 
plant used for HiFi resequencing
Reads assembled into contigs de 
novo

Degron

M32 gDNA
WT gDNA
WT CDS
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IAA16Mut provides resistance to dicamba applied POST

Untreated Dicamba (140 g ha-1)
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IAA16mut has lower binding affinity to TIR1

SPR assay tested binding 
affinity and dissociation for 
IAA16 alleles with TIR1 in the 
presence of natural and 
synthetic auxins
Dotted lines are the mutant 
IAA16 allele, solid are WT
Shifts downward indicate 
lower binding affinity
Quicker reduction after 
binding indicate quicker 
dissociation
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Mutation affects protein-protein interaction
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Unraveling the resistance mechanism to dicamba in 
Palmer amaranth (Amaranthus palmeri)
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A survey identified dicamba-resistance Palmer amaranth

Foster, D., & Steckel, L. Weed Technol, (2022)

RF = ±14

Dr. Larry Steckel
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Enhanced metabolism not mediated by P450

1 0 1 0 0 1 0 0 0

0

2 5

5 0

7 5

1 0 0

Rate (g a.e. /ha)

In
ju

ry
 (%

)

0  = Sensitive
 = Sensitive + malathion
 = Resistant
 = Resistant + malathion

Rigon et al., 2020

37
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 = Sensitive
 = Sensitive + NBD
 = Resistant
 = Resistant + NBD



NTSR mechanism is not mainly involved in the resistance  

LC-MS/MS analysis of dicamba
A) Chromatographic separation of the dicamba
B) Calibration curve of dicamba
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C) Metabolism of dicamba in sensitive (=Sensitive) 
and resistant (=Resistant) Palmer amaranth 
biotypes. (P = 0.65)
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RNA-seq experiment and bioinformatic
IAA16

Visual inspection of AUX/IAA 16 in Palmer amaranth 

We also 
inspected TIR1

Ghanizadeh et al., 2024
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Gene expression of AUX/IAA in Palmer

IAA1 IAA4 IAA12 IAA16
0

2000

4000

6000

8000

10000

   

R
ea

d 
co

un
ts

 

 

 

 

a a

b b

a a

b b
a a

b b
a a

b b

IAA2(3
)

IAA6
IAA14

IAA17

IAA27
(2)

IAA29
0

2000
4000
6000

10000

12500

15000

  

R
ea

d 
co

un
ts

 

 

 

 

a a a
b

b b

a

b
bcc

a

b
c c

a

b

b b

a
ab

a

ab

b
b

S. untreated =                R. untreated = 
S. treated =                R. treated = 

AUX/IAA that responded differently
41



AMHs interaction and auxin-response genes 
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A. Response of TIR1, AFB, and APB in Palmer 
amaranth biotypes. 
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Questions



Fall 2025
AB 509 Herbicide Selectivity and Action 

Online asynchronous course intended for graduate students and 
working professionals in industry, government, and consulting positions 
with interest in herbicide use.
Topics covered include the physicochemical properties of herbicides, 
their selectivity (placement and metabolic tolerance), their mechanism 
of action, uses in weed management, visual symptoms of herbicide 
treatment, how plants can evolve resistance to these compounds, why 
herbicide applications fail, and controversial topics related to the use of 
herbicides.
Online registration will open April 2025. Contact: Franck Dayan at franck.dayan@colostate.edu
or Todd Gaines at todd.gaines@colostate.edu 

mailto:franck.dayan@colostate.edu
mailto:todd.gaines@colostate.edu
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